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First experimental evidences of the L-H transition and
formation of the density transport barrier in ASDEX tokamak.
(1982)
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Figure 1. Evolution of density profiles and fluctuations following the L–H transition in ASDEX 
Wagner F et al. 1991 Plasma Physics and Controlled Nuclear Fusion Research (Proc. 13th Int. 
Conf.,Washington, 1990) vol 1 (Vienna: IAEA) p 277; 
 
(a) development of edge density profiles (from reflectometry) from the L‐mode phase, 0.5 ms 
after the transition and then in a quiescent phase which developed after an ELMy phase;  
 
(b) radial variation of edge fluctuations for the same time points. 



First experimental evidences of the L-H transition and
formation of the density transport barrier in Doublett-III-D
tokamak. (1982.)
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Figure. 2.  Temporal changes at the L–H transition in DIII‐D (Doyle E J et al 1993 Plasma Physics and Controlled 

Nuclear Fusion Research (Proc. 14th Int. Conf.,W¨urzburg, 1992) vol 1 (Vienna: IAEA) p 235:   
 
(a) the drop in Dα , signifying the transition;  
 
(b) the change in Er ;  
 
(c)  the  associated  drop  in  density  fluctuations  as  measured  by  a 
reflectometer. 
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The key aspects of the experimental observations on
H-mode phenomena - regime of the enhanced confine-
ment:

(1) The H-mode transition is an edge phenomena.

(2) The time scales associated with the H-mode transition usually comprise a fast sub-
millisecond or microsecond onset, followed by a slower evolution on a time scale of 10
ms.

The temporal sequence of events occurring at the tran-
sition:

1 The creation of steep radial electric field gradients.

2 Rapid suppression or reduction of the drift turbulence and anomalous trans-
port.

3 Steepening of density and temperature profiles at the plasma edge.

4 Creation of an edge transport barrier, typically several centimetres wide.

5 Generation of edge localized modes (ELMs).



Numerical simulations of the tokamak plasma stability in
sheared flows

The first nonlinear gyro-Landau fluid simulations

R. E. Waltz, G. D. Kerbel, J. Milovich, Phys. Plasmas 1, 2229 (1994),
R. E. Waltz, G.D. Kerbel, J. Milovich, G. W. Hammett, Phys. Plasmas 2, 2404 (1995),
R. E. Waltz, R. L. Dewar, X. Garbet, Phys. Plasmas 5, 1784 (1998),

reveal basic general qualitative result:

The turbulence is suppressed by shear flow, when the flow velocity shearing rate
becomes larger than the maximum growth rate of the instabilities which can be
developed, i.e.

V′0y ≡
dV0y

dx
> γmax.

Beginning from experiments on Doublet–III–D tokamak this empiric quench rule,
was confirmed experimentally in numerous experiments in tokamaks.



Shearing modes

The modal type perturbation in the frame of references convected with plasma flow

φ (R, t) = φ0 exp (iωt− ikxξ − ikyη)

with shearing velocity

V0 (ξ) eη = V ′0ξey .

In the laboratory set of reference

x = ξ, y = η + V ′0ξt or ξ = x, η = y − V ′0xt

the perturbation has a non-modal structure:

φ (r, t) = φ0 exp
(
iωt− ikxx− iky

(
y − V ′0xt

))
= φ0 exp

(
i
(
ω + kyV

′
0x
)
t− ikxx− ikyy

)
= φ0 exp

(
iωt− i

(
kx − kyV′0t

)
x− ikyy

)
.

For kx ∼ ky , under the condition of the ”quench rule” V′0 > γ and t ∼ γ−1,
V′0t > 1 !!! The non-modal term becomes dominant!
Note, that in the normal-mode approach, the solution is sought in the normal
mode (modal) form φ (r, t) = φ (x) exp (ikyy − iωt) with SEPARABLE
dependences on time and x-coordinate.



Non-modal approach to the theory of
the plasma shear flows stability

The non–modal approach to the theory of the stabil-
ity of the shear flows grounds on the methodology
of the shearing modes.

The shearing modes are the waves that have a static
spatial structure in the frame of the background flow.

They shear with the background flow.



Non–modal approach to sheared toroidal flows with applications to the ballooning
instabilities:
W. A. Cooper. Ballooning instabilities in tokamaks with sheared toroidal flows, Plasma
Physics and Controlled Fusion, Vol. 30, 1805-1812 (1988)
F. L. Waelbroeck, L. Chen, Ballooning instabilities in tokamaks with sheared toroidal
flows, Phys.Fluids B 3, 601 (1990)

Non–modal approach to the theory of the magnetorotational instability:
J. Squire, A. Bhattacharjee, Nonmodal growth of the magnetorotational instability,
Phys.Rev.Lett, 113, 025006 (2014)
J. Squire, A. Bhattacharjee, Magnetorotational instability: nonmodal growth and the
relationship of global modes to the shearing box, The Astrophysical Journal, 797:67
(2014)

Non–modal approach to the theory of the diocotron instability:
V.V. Mikhailenko, Hae June Lee, V.S. Mikhailenko, Non-modal analysis of the diocotron
instability: Plane geometry, Phys. Plasmas 19, 082112 (2012);
V.V. Mikhailenko, Hae June Lee, V.S. Mikhailenko, N.A.Azarenkov, Non-modal analysis
of the diocotron instability: Cylindrical geometry, Phys. Plasmas 20, 042101 (2013)
V.V. Mikhailenko, V.S. Mikhailenko, Younghyun Jo, and Hae June Lee, Nonlinear shear-
ing modes approach to the diocotron instability of a planar electron strip, Physics of
Plasmas 22, 092125 (2015);



The application of the shearing modes approach to
the fluid models of the plasma shear flows.

Hasegawa–Wakatani system of equations
for plasma with strong shear flow

Mikhailenko V.S., Mikhailenko V.V., and Stepanov K.N., Temporal evolution of linear drift waves in a
collisional plasma with homogeneous shear flow. Physics of Plasmas, 2000, vol.7, N.1, P.94–100.

We investigate the temporal evolution of drift modes in time-dependent shear flow using the Hasegawa–
Wakatani system of equations for the dimensionless density n = ñ/ne and potential φ = eϕ/Te
perturbations (ne is the electron background density, Te is the electron temperature)
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∂t
+ V0 (x, t)

∂
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φ− ρ2s∇

2
φ
)
− vde

∂φ
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In the normal-mode approach, the solution is sought in the form

φ (r, t) = φ (x) exp (ikyy − iωt)

and for the modal structure φ (x) we obtain the equation

ρ2s
d2φ (x)

dx2
−
[(

1 + k2yρ
2
s

)
−

kyvde

ω − kyV0 (x)

]
φ (x) = 0.

With new spatial variables ξ, η,

t = t, ξ = x, η = y − V ′0xt, z = z.

the Fourier transformed Hasegawa–Wakatani system reduces to the equation

1

C

d2

dT 2

[ (
1 + T 2

)
φ
]

+
d

dT

{ [
1 + l2ρ2s

(
1 + T 2

)]
φ
}

+ iSlρsφ = 0,

where a dimensionless time variable T is defined by T = V ′0τ − (k⊥/l) and parameters

C and S are equal respectively to C =
ak2z

ρ2sl
2V ′0

=
Tek2z

ρ2sl
2 V ′0n0e2η‖

, S =
lvde

V ′0 lρs
.

The linear Hasegawa-Mima equation obtains a simplest form

d

dT

{ [
1 + l2ρ2s

(
1 + T 2

)]
φ
}

+ iSlρsφ = 0.



The solution for φ (τ, kx, ky , kz) it is equal to

φ (t, kx, ky , kz) = φ (t = 0, kx, ky , kz)
1 +

(
k2yρ

2
s + k2x

)
1 + k2yρ

2
s + ρ2s

(
kyV ′0t− kx

)2
× exp

−i S√
1 + k2yρ

2
s

tan−1 ρs
(
kyV ′0t− kx

)√
1 + k2yρ

2
s

+ tan−1 kxρs√
1 + k2yρ

2
s


 .

where S =
kyvde
V ′
0kyρs

.

For V ′0tkyρs < 1

φ (t, kx, ky , kz) ∼ φ (t = 0, kx, ky , kz) eiωdet;

for V ′0tkyρs > 1,

φ (t, kx, ky , kz) ∼ φ (t = 0, kx, ky , kz)
eiα(

kyρsV ′0t
)2 .

The suppression of the drift resistive instability in the case of sufficiently strong flow
shear is a non–modal process, during which the initial separate spatial Fourier harmonic
of the drift wave potential transformed into zero-frequency convective cell with amplitude
decreasing with time as (V ′0t)

−2.





φ (t) ∼
1

(V ′0t)
2



RENORMALIZED HYDRODYNAMIC THEORY FOR

DRIFT MODES IN PLASMA SHEAR FLOWS

We investigate the temporal evolution of drift modes in time-dependent shear flow
using the Hasegawa–Wakatani system of equations for the dimensionless density
n = ñ/ne and potential φ = eϕ/Te perturbations (ne is the electron background
density, Te is the electron temperature)

ρ2s
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For the homogeneous velocity shear, V ′0 = const :
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Three steps of the renormalization procedure.

The first step.

With new spatial variables ξ, η,

t = t, ξ = x, η = y − V ′0xt, z = z.

the Hasegawa–Wakatani system has a form

ρ2s

(
∂

∂t
−
cTe

eB

(
∂φ

∂η

∂

∂ξ
−
∂φ

∂ξ

∂

∂η

))
∆φ = a

∂2

∂z2
(n− φ) ,

(
∂

∂t
−
cTe

eB

(
∂φ

∂η

∂

∂ξ
−
∂φ

∂ξ

∂

∂η

))
n+ vde

∂φ

∂η
= a

∂2

∂z2
(n− φ) .

The Laplacian operator ∆ now becomes time-dependent,

∆ =
∂2

∂x2
+

∂2

∂y2
=

(
∂

∂ξ
− V ′0t

∂

∂η

)(
∂

∂ξ
− V ′0t

∂

∂η

)
+

∂2

∂η2
.

leaving us with an initial value problem to solve.



The conclusions of principal importance:
With convective variables ξ and η the system of governing equations does not
contain any more the spatial dependency connected with the flow shear.

The linear solution has a form

φ (ξ, η, t) =

∫
dkx

∫
dkyφ (kx, ky , 0) g (kx, ky , t) e

ikxξ+ikyη ,

where φ (kx, ky , 0) is the initial data and g (kx, ky , t) is the linearly unstable solu-
tion.

It was shown (Mikhailenko-2000) for the case of the spatially homogeneous time-
independent velocity shear, that for ωd > v′0 ∼ γ, where γ is growth rate of the
resistive drift instability in plasma without shear flow, the solution g (kx, ky , t) in
times

(
v′0
)−1

< t .
(
v′0kyρs

)−1 still has an ordinary modal form,

g (kx, ky , t) = e−iωdt+γt.

In the laboratory frame solution becomes nonseparable in space and time and
therefore quite different from the normal mode assumption,

φ (r, t) =

∫
dkx

∫
dkyφ (kx, ky , 0) e−iωdt+γt+i(kx−kyv

′
0t)x+ikyy



It is important to note that the convective nonlinear derivative remains the same
in the new convective coordinates as for plasma without any flows.

Therefore, the nonlinear evolution of the resistive drift instability in times(
V ′0
)−1

< t <
(
V ′0kyρs

)−1 governed by H–W system will occur as in plasmas
without shear flow.

The second step (it is equally valid for plasmas without flows): Transformation
to the non-linear convective coordinates.

With new variables ξ1, η1,

ξ1 = ξ − ξ̃ (t) = ξ +
cTe

eB

t∫
t0

∂φ

∂η
dt1, η1 = η − η̃ (t) = η −

cTe

eB

t∫
t0

∂φ

∂ξ
dt1

the convective nonlinearity becomes of the higher order with respect to the potential φ.
Omitting such nonlinearity, as well as small nonlinearity of the second order in the
Laplacian, resulted from the transformation to nonlinearly determined variables ξ1, η1,
we get linear equation with solution, where wave numbers kx, ky are conjugate there
to coordinates ξ1, η1 respectively. With variables ξ and η this solution has a form

φ (ξ, η, t) =

∫
dkx

∫
dkyφ (kx, ky , 0) g (kx, ky , t1) eikxξ1+ikyη1

=

∫
dkx

∫
dkyφ (kx, ky , 0) g (kx, ky , t1) eikxξ+ikyη−ikxξ̃(t1)−iky η̃(t1),

This equation is in fact a nonlinear integral equation for potential φ, in which the effect
of the total Fourier spectrum on any separate Fourier harmonic is accounted for.



The third step: The calculation the correlations of the plasma displacements in
the unstable electric field of the drift turbulence.

Assuming that the displacements ξ̃ (t), η̃ (t) obey the Gaussian statistics with mean zero,〈
exp

[
ik1x

(
ξ̃ (t1)− ξ̃ (t2)

)
+ ik1y (η̃ (t1)− η̃ (t2))

]〉
= exp

[
−

1

2
k
2
xKξξ (t1, t2)− kxkyKξη (t1, t2)−

1

2
k
2
yKηη (t1, t2)

]
we find in this case the following relation for Kξξ (t):〈(

ξ̃ (t)
)2
〉

= Kξξ (t, t0) = Kξξ (t) =
c2T 2

e

e2B2

t∫
t0

dt1

t∫
t0

dt2

∫
dkx

∫
dky |φ (kx, ky, 0)|2 k2y

× exp (γ (t1 + t2)− iωd (t1 − t2))

× exp

[
−

1

2
k
2
xKξξ (t1, t2)− kxkyKξη (t1, t2)−

1

2
k
2
yKηη (t1, t2)

]
.

where

Kξξ (t1, t2) =

〈(
ξ̃ (t1)− ξ̃ (t2)

)2
〉
, Kηη (t1, t2) =

〈
(η̃ (t1)− η̃ (t2))

2
〉

Kξη (t1, t2) =
〈(
ξ̃ (t1)− ξ̃ (t2)

)
(η̃ (t1)− η̃ (t2))

〉
,



The two-time scale procedure with time variables τ = t1 − t2 , t̂ = (t1 + t2) /2 of the
calculation of the dispersion tensor of random displacements of the plasma is
developed.
A general equation,

k2xKξξ (t) + 2kxkyKξη (t) + k2yKηη (t)

=
T 2
e c

2

e2B2

∫
dk1x

∫
dk1y

t∫
0

dt̂
∣∣φ (k1x, k1y , t̂ )∣∣2 ∣∣∣[~k⊥ × ~k1⊥]∣∣∣2 C (k1x, k1y , t̂ )

ω2
d (k1x, k1y)

= 2

t∫
t0

dt̂ C
(
kx, ky , t̂

)

where
∣∣φ (k1x, k1y , t̂ )∣∣2 = |φ (k1x, k1y , 0 )|2 e2γ(k1x,k1y)t̂.

The renormalized form of the potential, in which the average effect of the random
convection is accounted for,

φ (ξ, η, t) =

∫
dkx

∫
dkyφ (kx, ky , 0)

× exp

−iωdt+ γt−
t∫

t0

dt̂ C
(
kx, ky , t̂

)
+ ikxξ + ikyη

 .



The saturation of the instability occurs when ∂ (φ (ξ, η, t))2 /∂t = 0, i.e. when

γ (kx, ky) = C (kx, ky , t)

=
T 2
e c

2

e2B2

∫
dk1x

∫
dk1y |φ (k1x, k1y , t)|2

∣∣∣[~k⊥ × ~k1⊥]∣∣∣2 C (k1x, k1y , t )

ω2
d (k1x, k1y)

γ (kx, ky) =
T 2
e c

2

e2B2

∫
dk1x

∫
dk1y |φ (k1x, k1y , t)|2

∣∣∣[~k⊥ × ~k1⊥]∣∣∣2 γ (k1x, k1y)

ω2
d (k1x, k1y)

The sought–for value is a time tsat at which the balance of the linear growth and
nonlinear damping occurs for given initial disturbance φ (k1x, k1y , 0) and dispersion.
With obtained tsat the saturation level will be equal to |φ (tsat)|2.
The well known order of value estimate for the potential φ in the saturation state is
obtained easily

eφ

Te
∼

1

k⊥Ln

for times
(
V ′0
)−1

< t <
(
V ′0kyρs

)−1.
Obtained results show that the nonlinearity of the Hasegawa–Wakatani system of
equations in variables ξ and η does not display any effects of the enhanced
decorrelations provided by flow shear.



In the laboratory frame of reference such spatial Fourier modes are observed as a
sheared modes with time dependent component of the wave number
kx(lab) = kx − kyv′0t, directed along the velocity shear,

φ (r, t) =

∫
dkx

∫
dkyφ (kx, ky , 0) ei(kx−kyv

′
0t)x+ikyy−iωdt+γt−ikxξ̃(t1)−iky η̃(t1)

The displacements ξ̃ (t) and η̃ (t) are observed in the laboratory frame as the
displacements x̃ (t) and ỹ (t) which are equal to

x̃ (t) = ξ̃ (t)

and

ỹ (t) =

t∫
t0

ṽy (t1) dt1 =
cTe

eB

t∫
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dt1
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∂x
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t∫
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dt1φ (kx, ky , 0)
(
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× exp

(
−iωdt1 + γt1 + i(kx − kyv′0t1)x+ ikyy − ikxξ̃ (t1)− iky η̃ (t1)

)



The correlation Kyy (t) is

Kyy (t) =
c2T 2

e

e2B2
Re

∫
dkx

∫
dky |φ (kx, ky , 0)|2

C1

(
kx, ky , t̂, x

)(
ωd (kx, ky) + kyv′0x

)2
×
(

2

3

(
kyv
′
0

)2
t3 − 2kxkyv

′
0t

2 + 2k2xt

)
,

It displays the effect of the anisotropic dispersion conditioned by flow shear,
observed in the laboratory frame of reference: dispersion increases much faster
along a flow than in the direction of the flow shear.

This effect of the ”enhanced decorrelation by flow shear” have nothing in
common with ”enhanced suppression” of turbulence in shear flows.



The temporal evolution of the resistive
pressure-gradient- driven turbulence and anomalous

transport in shear flow across the magnetic field

The temporal evolution of the hydrodynamic resistive pressure-gradient- driven
mode in a sheared flow is investigated as a solution of the initial value problem
by employing the shearing modes approach.

It reveals essential difference of the processes, which occur in the case of the
flows with velocity shear less than the growth rate of the instability in the steady
plasmas, with processes which occur in the flows with velocity shear larger than
the growth rate.

We found that the suppression of the turbulence by a sheared flow occurs only
in the flows with velocity shear larger than the growth rate. In this case, the
initial value scheme, which does not impose a priori any constraints on the form
that solution may take, is necessary for the proper description of the temporal
evolution and eventual suppression of the turbulence in a sheared flow.



The governing equations of the present model includes the resistive and pressure
gradient driven instabilities
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∇Ã‖ × b0 · ∇

)
∇2
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The operator d/dt is defined for the sheared flow transverse to the magnetic field
b0 = B0b0 (directed along the z axis), with uniform velocity shearing rate, i.e,
v0(x) = v′0xey , where v′0 is independent of x, as

d

dt
=

∂

∂t
+ v′0x

∂

∂y
+ vE · ∇

with vE = (c/B0)b0 ×∇φ̃.



In the sheared coordinates

t = t , ξ = x , η = y − v′0xt , z = z

convected with the sheared flow the linearized system for the nondimensional variables
φ = eφ̃/Te , A‖ = eÃ‖/Te, pe = p̃e/n0eTe, pi = p̃i/n0eTi becomes
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∂η
+ vRe

∂pe

∂η
+ Γ

c2

ω2
pe

v2Te
c

∂

∂z
∇2
⊥A‖ = 0,

∂pi

∂t
− (vdi − vRi)

∂φ

∂η
+ vRi

∂pi

∂η
= 0 ,

(
∂

∂t
+ vdi

∂

∂η

)
∇2
⊥φ = v′0

∂

∂η

(
∂pi

∂ξ
− v′0t

∂pi

∂η

)
−

1

ρ2s
vRe

∂p̃e

∂η
+
Te

Ti

1

ρ2s
vRe

∂p̃e

∂η
−
v2A
c

∂

∂z
∇2
⊥A‖ ,

where the operator ∇2
⊥ is

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
=

∂2

∂η2
+

(
∂

∂ξ
− v′0t

∂

∂η

)2

.

With new coordinates the spatial inhomogeneity introduced by the sheared flow velocity
is excluded from the system and the effects of the flow shearing are transferred to the
time domain.



A‖(t, k⊥, l, kz) =

∫∫∫
dξ dη dz A‖(t, ξ, η, z) exp {−ik⊥ξ − ilη − ikzz} ,

and the solution of the Fourier transformed system reduces to the initial value problem
of the temporal evolution of the separate spatial Fourier harmonics of A‖, φ, pe and pi.

dg

dT
+ F (T ) g = 0.

g = (Ψ, pe, pi, U), Ψ =

(
1 + c2l2

ω2
pe

(1 + T 2)

)
A‖, U =

(
1 + T 2

)
φ

F (T ) =



iCe+q
2Re(1+T2)

1+q2(1+T2)
−i c

vA
S 0 i c

vA
S 1

1+T2

− iS
vA
c
l2ρ2s(1+T

2)
1+q2(1+T2)

iQe 0 i (Ce −Qe) 1
1+T2

0 0 iQi −i (Ci −Qi) TeTi
1

1+T2

i
vA
c
S(1+T2)

1+q2(1+T2)
− iQe
l2ρ2s

T Ti
Te

+ iQi
l2ρ2s

iCi


.

T = v′0t−
k⊥
l

, ρs = vs/ωci = (Te/Ti)
1/2 ρi is the ion-sound Larmor radius,

vs = (ΓeTe/mi)
1/2 is the ion-sound velocity, ρi is the ion thermal Larmor radius,

vTe(Ti) is the electron (ion) thermal velocity, and vA is the Alfvén velocity.

S =
kzvA

v′0
, Ce,i =

lvde,di

v′0
,

Qe,i =
lvRe,Ri

v′0
, Re =

νei

v′0
, q2 =

c2l2

ω2
pe

=
me

mi

1

β
l2ρ2s



The ”almost” modal solutions exist in the time interval

(
v′0
)−1 � t & (lvde)

−1 , (kzvA)−1 ,

i.e. for large values of the dimensionless parameters

S � 1, S/Ce(i) = O(1), S/Qe(i) = O(1), S/Re = O(1).

This is a case of a weak flow shear.

The time dependence of F (T ) becomes strong for T > 1, i.e. for time t >
(
v′0
)−1.

At this time the non-modal structure of the solution occurs and the solution of
the initial value problem becomes necessary.

For time t & (lvde)
−1 , (kzvA)−1 the condition t�

(
v′0
)−1 corresponds to small

values of the dimensionless parameters

S � 1, S/Ce(i) = O(1), S/Qe(i) = O(1), S/Re = O(1) and T > 1.

This is a case of a strong flow shear.



Nonmodal linear analysis for a weak flow shear
S → λS, Ce(i) → λCe(i), Qe(i) → λQe(i), Re → λRe,
The regime of weak flow shear corresponds to large values of the parameter λ.

g (T, λ) = a (T ) exp

−iλ T∫
T0

Ω (T1, λ) dT1


where a(T ) is a column-vector, and Ω(T, λ) =

∑∞
i=0 Ωi(T )λ−i.

For ω (t) = v′0Ω0(T ) : (
ω (t)− lvde + i

me

mi

νei

β
K2
⊥ (t)ρ2s

)
×
[
(ω (t)− lvRe) (ω (t)− lvdi) (ω (t)− lvRi)K2

⊥ (t)ρ2s

−ω (t) (lvde − lvRe) (lvRi − lvRe)]
= k2zv

2
AK

2
⊥ (t)ρ2s

[
K2
⊥ (t) ρ2s (ω (t)− lvdi) (ω (t)− lvRi)

+ω (t) (ω (t)− lvde + lvRe − lvRi)] = 0,

and K2
⊥ (t) = l2

(
1 + T 2

)
.



The resistive drift – Alfven instability.

The case of a spatially homogeneous magnetic field, i.e. when vRe = vRi = 0.

(ω (t)− lvde)
(
ω2 (t)− ω (t)lvdi − k2zv2A

)
= K2

⊥ (t)ρ2sk
2
zv

2
A (ω (t)− lvdi)

(
1− iνei

ω (t)

k2zv
2
Te

)
,

describes the long wave length, K⊥ (t) ρs � 1, resistive drift – Alfven instability of
steady plasmas.
ω01 = lvde , ω02,03 = lvdi/2±

(
l2v2di/4 + k2zv

2
A

)1/4. The the drift wave ω01 and shear
Alfven wave ω02 are coupled due to the finite ion Larmor radius effect. The instability
occurs when ω01 ' ω02. The coupling is small when K⊥ (t) ρs � 1 and reveals in the
development of the instability with the growth rate γ (t) = Im δω (t), where

δω (t) = ±K⊥ (t) ρskzvA

(
ω01 + |lvdi|
ω02 − ω03

)(
1− i

νeiω01

k2zv
2
Te

)1/2

.

γ (t) ∼ νeiq
(
me

miβ

)1/2

� νei.



The pressure-gradient-driven Rayleigh – Taylor (RT) instability
of a plasma with cold ions

ω (t) (ω (t)− lvRe)K2
⊥ (t) ρ2s + lvRe (lvde − lvRe) = 0.

Re ω (t) = lvRe/2,

γ (t) = Im ω (t) =
lvRe

K⊥ (t) ρs

(
vde

vRe
−
(

1 +
K2
⊥ (t) ρ2s

4

))1/2

≈
l (vRevde)

1/2

K⊥ (t) ρs
,

The RT instability develops when vde/vRe > 1. The qualitative results obtained by the
numerical solution of the complete dispersion equation:
1) the maximum growth rate attains for the flute perturbations with kz = 0 and it rapidly
decreases when kz grows;
2) the growth rate is maximum for cold ions with Ti � Te; in this case the ion diamag-
netic drift and ion drift in the curved magnetic field are negligibly small.

γ(R)

γ(RT )

∼ K2
⊥ρ

2
s

me

miβ

νei

l (vdevRe)
1/2
∼ q2

νei

l (vdevRe)
1/2
� 1 ,

The RT instability has much larger growth rate γ(RT ) than the growth rate γ(R) of the
resistive drift–Alfven instability in plasmas with q � 1.



Nonmodal linear analysis for a strong flow shear
In the shearing flow, the nonmodal effects will determine the long time, t > γ−1, linear
evolution when they develop before the modal nonlinear effects become strong enough.
The linear evolution of the instabilities determined by Eq. (16), becomes strongly non-
modal in a sheared flow when time T � 1.
At time T � 1, two time intervals should be distinguished. In the first interval,

q−1 > T > 1 ,

the terms which contain small parameter q2 may be neglected in matrix F (T ). For the
dimensional time this interval is determined as

ts >
1

qv′0
> t >

1

v′0
.

ts ≈
(
v′0lρi

)−1 is a time at which K⊥ (t) ρi becomes equal to unity and the non-modal
kinetic approach becomes necessary.

The second interval is determined as

T > q−1,

i.e. for time t

ts > t >
1

qv′0
=

(
Ti

Te

mi

me
β

)1/2

ts.

In this interval, q2T 2 is above the unity and the terms with q2T 2 in the matrix F (T )
should be retained. For β > mi/me and Ti ∼ Te inequality is not valid.



The non-modal temporal evolution of the flute RT instability is the dominant process in
first time interval. The system reduces to two equations

∂pe

∂T
+ iQepe + i (Ce −Qe)

U

T 2
= 0,

∂U

∂T
− i

Qe

l2ρ2s
pe = 0,

which transforms into simple equation for the function G (T ) = e−
i
2
QeTU (T ),

∂2G (T )

∂T 2
+Qe

(
Qe

4
−
Ce −Qe
l2ρ2sT

2

)
G (T ) = 0.

In time interval

2

lρs

(
Ce

Qe

)1/2

> T > 1 ,

the solution to this equation is

φ (T ) ≈ φ(1)1 (k⊥, l, T0) e−
i
2
QeTT ν1 + φ

(1)
2 (k⊥, l, T0) e−

i
2
QeTT ν2 ,

ν1,2 = −
3

2
±
(

1

4
+

(
γ

v′0

)2
)1/2

.

The nonmodal damping occurs when the shearing rate v′0 > γ(RT )/
√

2, In time

T > 2
lρs

(
Ce
Qe

)1/2
above the first interval potential φ (T ) decays with time as

φ (T ) ≈ φ(2)1 (k⊥, l, T0)T−2 + φ
(2)
2 (k⊥, l, T0)T−2e−iQeT ,



The running diffusion coefficients
Dξ (t, t0) along the ξ direction

Dξ (t, t1) =
1

2

d

dt

〈
[δξ (t, t1)]2

〉
, δξ (t, t1) =

t∫
t1

dt′vξ
(
ξ′, η′, t′, t0

)
,

The velocity vξ in first time interval is

vξ (ξ, η, t) = −
c

B0

∂φ (ξ, η, t)

∂η
' i

c

B0

∫
dk⊥dlle

ik⊥ξ+ilηe−
i
2
lvRetφ

(1)
1 (k⊥, l, t0)

(
v′0t
)ν1

Dξ (t, t1) ≈
c2

B2
0 (ν1 + 1)

∫
dk⊥dll

2
∣∣∣φ(1)1 (k⊥, l, t0)

∣∣∣2 (v′0)2ν1 t2ν1+1.

The eventual suppression of the RT turbulence occurs in the second time interval.

Dξ (t, t1) =
c2

B2
0

1(
v′0
)4 ∫ dk⊥dll

2
∣∣∣φ(2)1 (k⊥, l, t0)

∣∣∣2 1

t2

(
1

t1
−

1

t

)
,



The running diffusion coefficients Dx (t, t1) and Dy (t, t1) for the laboratory frame.
δx = δξ, =⇒ Dx (t, t1) = Dξ (t, t1).

dy (t) = vy (t) dt = dη (t) + v0 (ξ (t)) dt = vη (t) dt+ v′0ξ (t) dt,

Dy (t, t1) =
1

2

d

dt

〈
[δy (t, t1)]2

〉
≈

c2

B2
0

∫
dk⊥dll

2
∣∣∣φ(1)1 (k⊥, l, t0)

∣∣∣2 v′0
(
v′0t
)2ν1+3

(ν1 + 1)2 (ν1 + 2)
.

In the second interval, where |v′0t| > |v′0t1| � 1,〈
[δy (t, t1)]2

〉
=

c2

B2
0

∫
dk⊥dl

∣∣∣φ(1)1 (k⊥, l, t0)
∣∣∣2 l2t2(

v′0t1
)2

- the result pertinent for the deterministic motion, that
〈

[δy (t, t1)]2
〉1/2

∼ t. The
running diffusion-convection coefficient Dy (t, t1) :

Dy (t, t1) ≈
c2

B2
0

∫
dk⊥dll

2
∣∣∣φ(2)1 (k⊥, l, t0)

∣∣∣2 t(
v′0t1

)2 .
In the second time interval the transport of plasma along the sheared flow observed in
the laboratory frame is almost convective.



Shearing modes approach to the kinetic theory of plasma shear
flows.

∂Fα

∂t
+ v̂

∂Fα

∂r̂
+

e

mα

(
E0 (r̂) +

1

c
[v̂ ×B]−5ϕ (r̂, t)

)
∂Fα

∂v̂
= 0,

M ϕ (r̂, t) = −4π
∑
α=i,e

eα

∫
fα (v̂, r̂, t) dv̂.

USUALLY only the transformation to the convected coordinates in velocity space,

v̂x = vx, v̂y = vy + V0(x), v̂z = vz ,

without the transformation to the sheared coordinates in the configuration space
was used in the kinetic theory of plasma shear flows. After such transformation the
linearized Vlasov equation becomes

∂fα

∂t
+ V0 (x̂)

∂fα

∂ŷ
+ v̂

∂fα

∂r̂
+ ωcαvαy

∂fα

∂vαx
−
(
ωcα + V ′α

)
vαx

∂fα

∂vαy

=
eα

mα
5 ϕ (r̂, t)

∂F0α

∂v̂
.

The approximation of the ”slow” spatial variation of the flow velocity ω̂ = ω + kyV0 (x).



Vlasov equation in convected–sheared coordinates
Mikhailenko V.S., Mikhailenko V.V., Stepanov K.N., Plasma and Fusion research 5, S2015 (2010);
Mikhailenko V.S., Mikhailenko V.V., Stepanov K.N., Physics of Plasmas 18, 062103 (2011);
Mikhailenko V.V., Mikhailenko V.S., Hae June Lee, Koepke M.E., Plasma Phys. Control. Fusion 55
085018 (2013)
Mikhailenko V.V., Mikhailenko V.S., Hae June Lee, Physics of Plasmas 23, 062115 (2016)

For V0 (r) = V0 (x̂) ey = V ′0 x̂ey

Convected coordinates: v̂x = vx, v̂y = vy + V ′0x, v̂z = vz

Sheared coordinates: x̂ = x, ŷ = y + V ′0tx, ẑ = z

∂fα

∂t
+ vαx

∂fα

∂x
+
(
vαy − vαxV ′αt

)∂fα
∂y

+ vαz
∂fα

∂zα
+

ωcαvαy
∂fα

∂vαx
−
(
ωcα + V ′α

)
vαx

∂fα

∂vαy

=
eα

mα

(
∂ϕ

∂x
− V ′αt

∂ϕ

∂y

)
∂F0α

∂vαx
+

eα

mα

∂ϕ

∂y

∂F0α

∂vαy
+

eα

mα

∂ϕ

∂zα

∂F0α

∂vαz
.

The spatial inhomogeneity originated from the sheared flow velocity is excluded
completely. Now, spatial Fourier transform may be performed.



The Fourier transform in sheared coordinates

ϕ (r, t) =

∫
ϕ (k, t) eikxx+ikyy+ikzzdk,

∂fα

∂t
+
(
i
(
kx − V ′0tky

)
vαx + ikyvαy + ikzvαz

)
fα (vα,k, t)

+ωcαvαy
∂fα

∂vαx
−
(
ωcα + V ′α

)
vαx

∂fα

∂vαy

= i
eα

mα
ϕ (k, t)

[(
kx − V ′0tky

)∂F0α

∂vαx
+ iky

∂F0α

∂vαy
+ ikz

∂F0α

∂vαz

]
.

In the laboratory set of references, it becomes a shearing mode

ϕ (r̂, t) =

∫
ϕ (k, t) eikxx̂+iky(ŷ−V ′

0tx̂)+ikz ẑdk

=

∫
ϕ (k, t) ei(kx−V

′
0tky)x̂+iky ŷ+ikz ẑdk.

with time dependent wave number kx − V ′0tky .



The solution of the Vlasov equation in the form of the separate Fourier harmonic
with time independent wave numbers may be obtained only in convected-sheared
coordinates.
This solution reveals in the laboratory frame as a shearing mode with time depen-
dent x–component of the wave number.

With new leading center coordinates X, Y ,

x = X −
v⊥√
ηωc

sinφ, y = Y +
v⊥
ηωc

cosφ+ V ′0t (X − x),

z1 = z − vzt, η = 1 +
V ′0
ωci

,

the Vlasov equation transforms into the form

∂F

∂t
+

e

m
√
ηωc

(
∂ϕ

∂X

∂F

∂Y
−
∂ϕ

∂Y

∂F

∂X

)
+
e

m

√
ηωc

v⊥

(
∂ϕ

∂φ1

∂F

∂v⊥
−

∂ϕ

∂v⊥

∂F

∂φ1

)
−

e

m

∂ϕ

∂z1

∂F

∂vz
= 0,

f =
e

m

t∫
to

[
1

ωc

∂ϕ

∂Y

∂F0

∂X
−
ωc

v⊥

∂ϕ

∂φ1

∂F0

∂v⊥
+
∂ϕ

∂z1

∂F0

∂vz

]
dt′.



With leading center convected-sheared coordinates the Fourier transformation of the
perturbed potential becomes

ϕ (r, t) =

∫
ϕ (t,k) exp (ikxx+ ikyy + ikz) dk

=

∫
ϕ (t,k) exp (ikxX + ikyY + ikzz)

× exp

[
−
ik⊥ (t) v⊥√

ηωc
sin (φ1 −

√
ηωct− θ (t))

]
dk

where k2⊥ (t) =
(
kx − V ′0tky

)2
+ 1
η
k2y , and tan θ = ky/

√
η(kx − V ′0tky).

The time dependence of the finite ion-Larmor-radius-effect is the basic linear
mechanism of the influence of the velocity shear on waves and instabilities
in plasma shear flow.

Larmor radius effect here reveals the interaction of the perturbation having
time independent wave numbers kx, ky , kz with the ion, whose Larmor orbit is
observed in sheared coordinates as being subjected to persistent stretching.

This effect appears analytically identical to the interaction of the perturba-
tion with time-dependent wave numbers kx − V ′0tky , ky , kz , the ion orbiting
elliptically in the convecting frame.

Drift kinetic equation does not contains the shearing flow effects.



f (t,X, Y, v⊥, φ, vz , z1) =
ie

m

∞∑
n=−∞

∞∑
n1=−∞

t∫
dt1ϕ (t1,k)

× exp
(
− ikzvz (t− t1) + in (φ1 −

√
ηωct− θ (t))

−in1 (φ1 −
√
ηωct1 − θ (t))

)
Jn

(
k⊥ (t) v⊥√

ηωc

)
Jn1

(
k⊥ (t1) v⊥√

ηωc

)
×
[
ky

ηωcα

∂Fα

∂Xα
+

√
ηωcn1

v⊥

∂Fα

∂v⊥
+ k1z

∂Fα

∂vz

]

[(
kx − v′0tky

)2
+ k2y + k2z

]
ϕ (k, t) =

∑
α

i

λ2Dα

∞∑
n=−∞

t∫
t0

dt1ϕ (k, t1)

×In
(
k⊥ (t) k⊥ (t1) ρ2α

)
exp

[
−

1

2
ρ2α
(
k2⊥ (t) + k2⊥ (t1)

)]
× exp

[
−

1

2
k2zv

2
Tα (t− t1)2 − in√ηωcα (t− t1)− in (θ (t)− θ (t1))

]
×
[
kyvdα√

η
− n√ηωcα + ik2zv

2
Tα (t− t1)

]
+
∑
α

eαδnα (k, t0)



Figure 1: The sequence of the characteristic times for the long wavelength perturbations with
k̂⊥ (t0) ρi < 1.

ϕ (k, t) = ϕ0 exp

[
−iω (k) t

(
1−

(1 + τ)

aibi

t2

3t2s
Θ (t)

)
+ γ (k) t−

t2Θ (t)

2ait2s

]
.

where ai = τ + k2⊥ρ
2
i , bi = 1− k2⊥ρ

2
i , ts =

(
V ′0kyρi

)−1,

Θ (t) = 0 for t < 0 and Θ (t) = 1 for t ≥ 0.



The analysis on the base of drift kinetic equation

∂f

∂t
+
(
v‖ +

c

B
[E0 × n]

) ∂f

∂R
=

c

B
[∇Φ× n]

∂F

∂R
+ e (v · ∇Φ)

∂F

∂E

where

E =
mv2

2
+ eΦ (r, t) , E0 (r) = E′0xex

With convective coordinates x = ξ, y = η + V ′0ξt drift kinetic equations with Poisson
equation give for Maxwellian distribution F the integral equation for the potential Φ,

−k2 (t) Φ (k, t) + Φ (k, t)
∑
α

1

λ2Dα

+
∑
α

1

λ2Dα

t∫
−∞

dt1 exp

(
−
k2zv

2
Tα

2
(t− t1)2

)(
ikyvdαΦ (k, t1) +

dΦ (k, t1)

dt1

)
= 0

where k2 (t) = k2η +
(
kξ − V ′0tkη

)2
+ k2z .



∞∫
−∞

dteiωtΦ (k, t)

(
−2

kξkη

k20
V ′0t+

k2η

k20

(
V ′0t
)2)

+ Φ (k, ω) ε (k, ω) = 0

where k20 = k2ξ + k2η + k2z and

ε (k, ω) = 1 +
∑
α

1

λ2Dα

(
1 + i

(ω − kyvdα)
√

2kzvTα
W

(
ω

2kzvTα

))
Without shear flow we have known equation Φ (k, ω) ε (k, ω) = 0 with solution
ω = ω (k). The presence of shear flow modifies that solution. Assuming, that
k20λ

2
Dα

(
V ′0t
)2 � 1,

Φ (k, t) = C exp

(
−iω (k) t− t

(
∂ε

∂ω (k0)

)−1
(
−
kξkη

k20
V ′0t+

1

3

k2η

k20

(
V ′0t
)2))

The linear drift kinetic equation incorporate only one effect conditioned by shear
flow. It is the reduction of the waves frequencies. For drift waves with
kzvti � ω (k0)� kzvte,

Φ (k, t) = C exp

(
−ikyvdet

(
1−

k2ηv
2
s

ω2
pi

(
−
kξ

kη
V ′0t+

1

3

(
V ′0t
)2)))

.



Renormalized Non–Modal Theory of Drift Turbulence in
Plasma Shear Flows

dt = −
(

e
√
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The potential ϕ has a form,

ϕ (r, t) =

∫
dkϕ (k, t) eikxx+ikyy+ikzz

=

∫
dkϕ (k, t) exp

[
iΩ− i

k⊥ (t) v⊥
ωcα

sin
(
φ̄− ωcαt− θ (t)

)]
.

Ω = kxX̄ + kyȲ + kzz − in (φ1 −
√
ηωcit1 − θ (t1)) + k (t) δr (t)

and k (t) δr (t) denotes the phase shift resulted from the distortion of the waves pattern
by the shearing flow and the perturbations of ion trajectories due to their interaction with
the ensemble of the shearing perturbations.



At times t >
(
V ′0
)−1 the non-modal effects determine the nonlinear evolution of drift

turbulence with dominant breakdown of phase of the potential due to scattering of the
angle of the gyromotion in velocity space.

fα (t, kx, ky , kz , v⊥, φ, vz , z1) = i
eα

mα

t∫
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At times t >
(
V ′0
)−1 for k⊥ (t) v⊥ < ωci∣∣∣∣∣∣∣

kxδX (t)
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and for k⊥ (t) v⊥ > ωci, ∣∣∣∣∣∣∣
kxδX (t)

k⊥ (t)
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ωc
δφ (t)
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At times t > (V ′0)
−1 turbulent scattering of the angle δφ (t) is

the dominant process in the formation the turbulent shift of
the phase of the electrostatic potential.



ϕ (k, t) = ϕ0 exp

[
−iω (k) t
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−
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The potential ceases to grow, ∂ϕ/∂t = 0, when γ(k) = C(k, t),
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The non–modal evolution of the kinetic ion temperature gradient
instability of the shear flow across the magnetic field
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where I0 and I1 are the modified Bessel functions of the first kind and orders 0 and 1, respectively.
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The maximum growth rate γ (k) of this instability is of the order of the frequency; it
attains for the perturbations, which have the phase velocity along the magnetic field of
the order of the ion thermal velocity, i.e.

ω (k) ∼ γ (k) ∼ kzvTi,

and the normalized wave number component across the magnetic field, k⊥ρi, compa-
rable with the unity.

e |ϕ̃|
Ti
∼

k0z

k0⊥
∼
ω (k0)

ωci
,

where the estimates k0z ∼ ω (k0) /vTi and k0⊥ ∼ ρ−1
i were used.



For time t > t0 > ts,

Figure 2: The domain of the integration [t0, t] over time for the short wavelength perturbations with
k̂⊥ (t0) ρi � 1.

ϕ (k, t) = ϕ0 (k) exp
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Obtained solution is very different from
a canonical modal form.The non-
modal effect of the time dependent
ion Larmor radius gradually transforms
the initially unstable modal solution
v exp (−iω (k) t+ γ (k) t) to the non-
modal zero–frequency cell–like pertur-
bation. In the experimental condition,
that evolution observes as a vanishing of
the frequency spectrum of the unstable
electrostatic perturbations during the time
of the order of a few waves periods. Figure 3: Linear (red) and renormalized nonlinear

(blue) solutions for the potential ϕEq.(30) (k, t)



The nonlinear non–modal evolution of the ion temperature
gradient driven turbulence in the shear flow.
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At time t >
(
V ′0
)−1, the nonlinear scattering of the Larmor gyrophase δφ (t) becomes

the dominant process in the formation of the nonlinear shift of the phase of the electro-
static potential.〈
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The suppression of the anomalous transport by a shear flow.
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The order of value estimate for the anomalous ions thermal conductivity Ki (t),
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which displays the decay with time, that is a strictly non-modal effect, originated from
the sheared modes structure of the shear flow turbulence.



Conclusions
1 The application of the approximation of the ”slow” spatial variation of the flow veloc-

ity is valid only for time t�
(
V ′0
)−1. The ”quench rule” predicts the suppression of

the turbulence when V ′0 > γ. For time t ∼ γ−1 it occurs when V ′0t > 1, i.e. under
conditions at which modal approach is not valid. The suppression of the turbulence
by the shear flow is the non-modal process.

2 At these conditions the solution to Vlasov equation can’t be presented in the labo-
ratory coordinates in a form, in which the time and spatial dependences are sepa-
rable.

3 The solution to Vlasov equation in the form of the separate Fourier harmonic with
time independent wave numbers may be obtained only in convected-sheared coor-
dinates. That solution reveals in the laboratory frame as a shearing mode with time
dependent x-component of the wave number.

4 The time dependence of the finite Larmor radius effect is the basic linear mecha-
nism of the action of the velocity shear on waves and instabilities in plasma shear
flow. The drift kinetic equation does not contain any effects conditioned by shear
flow.

5 The dominant process which is responsible for the rapid suppression of the kinetic
instabilities is the turbulent scattering of the angle of the ion gyromotion by the
ensemble of the shearing waves with random phases.


